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We consider the generalization of scalar subcell resolution schemes 
to systems of viscous conservation laws. For this purpose we use a 
weakly nonlinear geometrical optics approximation for parabolic 
perturbations of hyperbolic conservation laws and the Roe-type field 
by field decomposition. Computations of the reactive Navier-Stokes 
equations are presented as an application. 0 1992 Academx Press, Inc. 

1. INTRODUCTION AND SUBCELL MODELS 

In this paper we consider numerical approximations to 
viscous perturbations of hyperbolic systems of the form 

ut +f(~)x = E(B(U) %)x2 (1) 

where f, = A(u) has real eigenvalues &(u), i = 1, . . . . n, and 
B(u) is positive. These equations serve as a model for 
compressible viscous flow. 

When E is small, solutions of (1) typically develop viscous 
shock layers where u changes rapidly over very narrow 
zones. Sophisticated methods have been developed for the 
purely hyperbolic case (E=O) [13, 21, 20, 231; these 
schemes capture shock discontinuities over very narrow 
zones without overshoots or undershoots. So far, numerical 
schemes which approximate (1) have relied on splitting the 
hyperbolic and parabolic parts and approximating the 
viscous term separately by the centered difference 
approximation. To avoid this splitting error, we are 
considering a numerical scheme that uses a subcell model 
for which one can obtain a time-accurate evolution. This 
scheme is designed to work on a coarse grid, i.e., where the 
viscous layers are not resolved. For scalar equations and 
convex flux functions f, such a numerical method was 
proposed in [ 10, 11 J. We now describe how this method 
was derived in terms of a subcell resolution model. 

For simplicity let us assume that B(u) = 1. Consider a 

* Research supported by NSF Grant DMS-9003965. 

spatial grid with uniform spacing h and cells I,= 
Cxj- l/19 xj+ l/2 1. The solution is approximated at cell 
centers u(xj) M uj. A subcell function gj+ &x) is a function 
which is defined on the interval Zj + 1/2 = [x,, xj + , ] such that 
gj+ ,,,(xj) = uj, and gj+ ,,2(xj+ 1) = uj+ 1. Let us denote by 
S(t) an approximate, or possibly exact, time evolution 
solver; i.e., S(t) U(X) is the solution at time t with the initial 
data at t = 0 given by u(x). The choices of S and g should 
be motivated by the fact that one would like to be able to 
easily compute S(t) g,+ 1,2(x). With these ingredients one 
can design a conservation form scheme with numerical 
flux hj+ I/Z which is consistent with the exact flux 
f(u)-MU)%: 

g+l -uu” h. 
,+ J+1/2 -hj-1/2 0 

At Ax = 

(2) 

The choice of the subcell function R should depend on the 
ratio of grid size h to the viscosity E. For example, if h/E 4 1, 
then the solution “looks” smooth on the given grid and the 
only reasonable choice of gj+ 1,2 is the linear interpolant. 
Since the second derivative of a linear function is zero, it is 
now also reasonable to define an approximate solver S that 
ignores the viscous term, 

s(t) Sj+ I/2(x) = gj+ 1/2Cx- uj+ l/2 t)Y 

where a/-+ ,,2 is the approximate convective speed: 

aj+ l/2= 
f(“j+l)-f(uj) 

#j+l -u, . 

It is easy to see that this scheme consists of a Lax-Wendroff 
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type approximation for the hyperbolic part and a centered 
difference approximation for the viscous part. The viscosity 
is not taken into account in the evolution operator. While 
this error should be small for “smooth” solutions (in fact the 
scheme is second order accurate), large errors due to 
oscillations should occur when h/E is not small. 

The next example is the other extreme case, i.e., when 
h/c % 1. Here the only reasonable choice of g, + i,* is the step 
function with a jump at xj+ i,*. For S we can choose the 
exact solution operator with E = 0. The resulting scheme is 
the Godunov scheme for the hyperbolic equation with zero 
viscosity which is first-order accurate but it is monotone 
and hence total variation diminishing. 

Finally, when 

one could consider more complicated choices of a subcell 
function. In [lo] we proposed that gj+ i,* be the travelling 
wave solution of (1). Consider only the case uj> uj+, 
(shock) and the travelling wave solutions (a.k.a. viscous 
profiles) that interpolate the data between the two grid 
points x,, x1+, , i.e., solutions of the form: u(t, x) = 
Q(x - st), where 4 must satisfy the following second-order 
ordinary differential equation 

Eqb” = -q/Y + f( 4)’ 

with the following boundary conditions: 

4(xj) = uj3 4(xj+l)=uj+l. 

To determine the unknown speed s, one additional condi- 
tion must be imposed; iffis an even function (e.g., Burgers 
equation,f( u) = u’), it is reasonable to impose the condition 
that the profile is symmetric, 

dGj+ l/2 +x) - fi = -(qqx,+1,*-x) - ti), 

where ti is the average of uj, uj+ i. The viscous profile 4 is 
determined uniquely; in the case of the Burgers equation, an 
explicit formula is available. The solver S is defined as 
follows: 

s(t) gj+ l/2 = gj+ l/21x - st). 

We make two remarks: 

1. The subcell function depends on the ratio h/e and 
tends to the linear subcell function when this ratio goes to 
zero, and it tends to the step function when this ratio goes 
to infinity. 

2. The solver s(t) is an exact solver, since 4 is a 
travelling wave solution. 

One can show that this scheme is second-order accurate 
(formally) in the sense that 

where u is the exact smooth solution which interpolates 
u,, uj+ I at time zero. The constant C(h/e) depends (in 
addition to h/c) only on derivatives up to second order of 
the solution at time zero. 

One can show this scheme is TVD when parameters h/E 
and At/h belong to a certain region in the parameter plane. 
In addition, in order for a three-point scheme to be both 
second-order accurate and TVD diminishing, these 
parameters must belong to another (slightly larger) region 
of the plane. The proof of these are in [lo]. 

In this paper we would like to extend these ideas to 
systems. Our goal is to construct a good approximate solu- 
tion at the subcell level that can be used in the computation 
of the viscous flux at the cell boundary. In Section 2 we 
show how to construct such a subcell approximation from 
a superposition of scalar viscous traveling waves. In the 
Appendix, we will show that the approximation is formally 
valid in the weakly nonlinear geometrical optics asymptotic 
regime [14, 191. This approximation is supposed to work 
for weak viscous shocks. However, in practice strong 
viscous shocks are also well approximated. Next, we show 
how to modify the scheme for practical purposes and point 
out the connection with flux-limiting TVD schemes 
[13, 231. Finally, in the last section we show some com- 
putations for reactive, compressible flows in one dimension. 
These computations are on coarse grids and compare 
favorably in terms of resolution with other computations 
that use standard schemes (cf. [3]). 

In conclusion to this introduction, we mention that 
Harten [12] has introduced a different subcell resolution 
idea in connection with reconstructing discontinuities for 
sharp shock capturing in 1D and Engquist and Sjogreen 
[ 81 have used ideas closely related to Harten’s to solve stiff 
problems with source terms, such as inviscid combustion. 

2. THE SUBCELL APPROXIMATION FOR SYSTEMS 

In this section we show how to construct a subcell 
approximation to (1) using the weakly nonlinear geometri- 
cal optics approximation which has been developed by 
several authors [14, 191 and propose a numerical method 
based on such an approximation. We also discuss practical 
modifications and point out connections between our 
scheme and the TVD flux-limiting schemes from [ 13, 231 
for systems of hyperbolic conservation laws. 
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We start with the Roe decomposition, 

Uj+l - u, = 1 WG(d 
k 

Note that (6) does not have a real solution elk unless bk < 0. 
For scalar equations this means that uj+ , < uj (shock). This 
suggests that we should treat the system as if there was a 
shock in every field and solve for elk by modifying Eq. (6) as 

where u0 is the Roe average and R,‘s are the eigenvectors 
of A(u,) =f’(uo). The Roe average u0 satisfies (7) 
4%J(~j+ 1- u,) = f( ui + i ) - f( u,) and has nicer properties 
than the arithmetic average of uj and uj+ i [21]. 

In the interval Z,, i,* = [x,, xi+ i], we consider the ansatz This completes the description of the subcell model. We now 
turn to the numerical method. 

“(t,X)=140-;~bk~kRk+ ... 

k 

=&+,(t,x)+ . . . . 

One could use the following formula for the numerical 
flux (see (2)), 

,k=,k($$)> where u(x, t) is the subcell approximation which is given in 
(4). However, since u = u0 - 4 u, (3) we use the expansion 

where 1,‘s are the eigenvalues of A(u,), bk and, hence, tli are 
small and &‘s will be determined later. We consider only 
genuinely nonlinear fields. Upon substituting the ansatz 

f(4X,,1/2? At/2))=f(u,)-~A,U,(Xj+,,2, At/2)+ ..’ 

into Eq. (1) and throwing away lower order terms in u, , 
one obtains viscous travelling wave solutions to Burgers and a similar one for B, to define a numerical flux as 
equation: 

1 
c$~ = - tanh X-xj+lj2-Akt 

> &k&/bk ’ 

hj+1/2= f(%) - 4 &4(x,+ ,,2, A@) 

-&~&,+1,2, A+‘). (8) 

This calculation is the same as the weakly nonlinear Remark. The terms discarded here are of the same order 
geometrical optics calculation in [ 14, 191 and we have 
included the details in the Appendix. The approximate 

in u1 as the terms discarded in the weakly nonlinear 

solution is then a superposition of travelling waves 
approximation (4). 

(appendix equation (25)) 
We shall write the numerical flux (8) in a form which 

reveals its relation to flux limiters and TVD schemes 

u(x, t)=u,-;xbk; 
k 

[ 13,23 J. Let us define 

sk = h (bkl/8eak. (9) 

x tanh x-xj+ll2 -i,t 

4% E/b, > 
R k> XErj+I/2. C4) 

Then sl. is a “smoothness” parameter, in the sense that it is 

Moreover, the constants elk are uniquely determined by the 
small when the solution is “smooth” in the kth field (i.e., b, 

boundary conditions u(x,, 0) = uj and u(x,+ i, 0) = uj+ , or 
is small) 

1 
Remark. If hce and 6, is small then from (7) 

(5) cx,=Ji-jzJ& -sos,=JgmE+ . . . . 
Since CC, = tanh(s,) (cf. (7)), and since, as we did before, 

we suppose that 6; 2 0; it follows from (4) that 
if u0 is the arithmetic average. Since the #k’~ are symmetric 
with respect to the center of the interval Z,+1,2, both 1 
conditions in (5) are satisfied if u,(X, t)=xbk- 

k tanh(s,) 

1 - tanh (6) x tanh -23, x - xj+ l/2 

h 
-Ikt Rk. (10) 

> 
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Using this formula for ur, after a small calculation, it 
follows from (8) that 

h;+ 112 = f(uo) -; 1 (@(ck) A/c +; &(cp”,k)’ (cd) bk&, 
k 

(11) 

where 

@(Ck) = 
tanh(c,s,) & At 

tanh(s,) ’ Ck=h. (12) 

The first sum in the numerical flux is the artificial 
viscosity, the second sum is the real viscosity. The balance 
between the two is achieved as follows: The artificial 
viscosity is minimized in smooth regions and maximized 
inside shock layers. The opposite effect occurs with the real 
viscosity. The parameter sk serves as a detector of “non- 
smooth” regions and, depending on its size, the subcell 
scheme tends to the centered-Lax-Wendroff scheme in one 
case and to the Roe scheme in the other case as the subcell 
function gradually changes from a linear function to a step 
function. 

In practice, this scheme is unfortunately not robust 
enough since, in order to suppress oscillations, one has to 
find the appropriate value of h/c (cf. [lo]), and for systems 
this can only be done with limited success. In addition, 
many evaluations of tanh are required which slow down the 
computation considerably. With very minor modifications, 
however, we can recover the robustness of a TVD scheme. 
The only modifications are to replace (~2 by a piecewise 
linear approximation and to choose a different smoothness 
parameter to replace sk. 

In the TVD approach, as described, for example, in [23], 
the measure of smoothness is given by the parameters 

r&= 
C$,- I(1 -C{j- 1) b,j- I 

C:,(l -CL,,) bk,.i 

r k,.j+ 1 = 
Ck~j+l(l+Ck,j+l)bk.j+I 

‘kyj(‘+Ck.,)bk,, ’ 

where the subscripts j- 1, j, j + 1 refer to the quantities 
computed in the intervals I, _ 1,2r I,+ 1,2, I, + 3,2, respectively, 
and the superscripts +, - denote the positive and negative 
parts, respectively. We refer the’ reader to [ 13, 231 for the 
details as to what motivates this choice. Let us define 

s:j=l-r:j 

s <,+,=I-G,,+1 

and note that scj, ski+ r tend to 0 when the solution is . , 

smooth. The limiter (p: in (12) is approximated now by a 
piecewise linear function as follows: 

1 -(l -s;j)(l -6-k) 

if ck>OandO<s:jd I 

-l+(l-s<,+,)(l+ck) 

(P$Pk.,+l(Ck) = 
if ck<OandO<s;,+,dl 

ck if c,>Oandslj<O 

ck if ck<Oands;,+,<O 

1 if ck30andslj> 1 
-1 if ck<Oands;j+,>l. 

(13) 

17 I 

0.5 - '$j 

O- 

1 

0.5 - 

O- 

-0.5 - 

-1 - 
-1 -0.5 0 0.5 1 

We now replace cp;t” in (11) by CJI$J~~~.~+~ above; since the 
function is discontinuous (piecewise linear), the derivative 
in (11) is taken from only one side. This completes the 
description of the scheme. 

Without the s-term, i.e., the real viscosity term, the 
numerical flux (11) is a TVD flux as described in [23] for 
hyperbolic conservation laws. This is a different interpreta- 
tion of flux-limiters, one that is based on subcell resolution 
models. 
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3. COMPUTATIONAL RESULTS 
FOR AN APPLICATION 

In this section we apply the subcell resolution scheme to 
the computation of particular solutions of the 1D reactive 
and compressible Navier-Stokes equations. These problems 
are characterized by the presence of different phenomena 
occuring on different scales such as sound (shock) propaga- 
tion, diffusion, and reaction. Our goal is to study the effects 
of viscosity on the structure of combustion waves. The 
subcell method combines the propagation and diffusion 
without any splitting. The reaction term is a lower order 
source term in the equations and is treated here by a 
standard implicit trapezoidal method so it is not part at the 
subcell model. In our computations we will consider 
moderate reaction rates, in particular, not large compared 
to other parameters. Inviscid problems with stiff terms have 
been solved, for example, by Engquist and Sjogreen by a 
robust subcell method [S]. 

According to Von Neumann [4], in the presence of 
viscosity and a finite (not large) reaction rate the structure 
of a detonation wave is given by a slow deflagration (flame) 
across which the pressure remains constant and is initiated 
by a fluid mechanical shock. This precursor shock is respon- 
sible for the rise in temperature that initiates the flame. The 
speed of the flame changes with the amount of viscosity 
present. 

When the reaction rate is raised to a critical level the 
detonation wave reappears but bifurcations may occur 
when the viscosity in the problem is changed. This last state- 
ment has been analyzed rigorously by A. Majda for a simple 
2 x 2 model system of equations [IS]. The bifurcation 
occurs from a CJ detonation characterized by a sharp 
pressure spike to a faster moving weak detonation. 

The reactive, compressible Navier-Stokes equations are 

PI + (PU), = 0 

(PZ), + (puz), = -S(T) PZ+ (dp ZxL 

where (cf. [9, 61) 

p, u, p, e, T = density, velocity, pressure, internal energy, 
temperature 

p, 2, d= coefficients of viscosity, heat conduction, and 
species diffusion 

z= mf/tmf + mbh mf  , mb- - mass of fresh, burnt gas 

c,, c, = coefficients of specific heat at constant volume, 
pressure 

E = e + u2/2 + q,Z is the total energy, q. = heat release 
(positive for exothermic reactions) 

e = (l/(y - l)p)(p/p) = c, T is the polytropic gas law and 
Y = CpIG 

For S(T) we use a simple model given by the ignition type 
kinetics [ 33, 

S(T)=K,H(T- T,), (15) 

where His the Heaviside function and K, is a large constant 
that measures the reaction rate. The parameter that 
measures the stiffness in the numerical problem is, however, 
given by K. At. 

To simplify things we will assume that 

,u=$=d. (16) 

This implies that there is only one viscous scale in the 
problem given by ,u. The more general situation, when, for 
example, ,u and 2 are allowed to be sufficiently different from 
each other in magnitude, is of great physical importance 
but unfortunately does not fall withing the framework 
developed here. 

In order to compute the numerical flux, we should write 
the viscosity terms from (14) in terms of the conserved 
variables U = (p, pu, pE, pZ). Using (16), a brief calcula- 
tion yields 

+ (qop dZ,L + c,JTx.x 
xx 

pE+qO(P- ‘)“p. +L(pE), (17) 
P2 r P 

+4o(P- 1) 

P 

(PZ), 

> x 

(dp -?A = A( PZL - ZP,),. 

We now turn to the Roe decomposition for the hyperbolic 
part of the system (14) (cf. Section 2). We need to find a 
state U, with the property 

wheref( U) = (pu, pu2 + p, puE + up, puZ) is the flux vector 
from (14) and A(U) is its Jacobian derivative. By following 



A SUBCELL RESOLUTION METHOD 355 

Roe’s calculation in the non-reactive case [21], one easily 
obtains the Roe averages 

PO=JPjP,+I 

limiters for the genuinely nonlinear fields 1 and 2 are given 
by (13); for the linearly degenerate field 3,4, we use the 
superbee limiter (cf. [23]) which has the effect of sharpening 
contact discontinuities. 

The numerical flux should be modified to take into 
account the reaction term in the last equation of (14). 
A simple second-order accurate method is the implicit 
trapezoidal method. In our case it can be easily applied 
to the last equation of (14) as follows: 

z 

0 
=zj&'+zj+l J&Y 

"+I- (pzy 

JFj+& ’ 

(pZ),+S(T)pZdPZ) At 

where the total enthalpy H = ye + u2/2. From these averages 
+ S(T”+‘)w) n+ ’ + S( T”)( pZ)” 

2 
. (21) 

one can compute U. and verify that (18) holds. 
In order to be able to compute the numerical flux (1 1 ), 

we need to compute the eigenvalues and eigenvectors 
This, added to the numerical flux difference (11) gives a 

ik,Rk,k=l ,..., 4, of A( U,), and the coefficients b, from the 
complete description of the scheme. Note that T”+l in (21) 

decomposition A U = C, b, Rk. We provided the result of 
these straightforward computations, 1.5 x’“’ 

&= &J-co, lt*=uo+co, &=uo, I,=u, 

R,=(l,uo-co,Ho+qo--oco,Zo) 

R,=(1,uo+co,Ho+qo+~oco,Zo) 

R,=(i.u,,$O) 

R,=(QO,qo, 1) 

b =r!-r2 
1 2 

b =n+v2 
2 2 

b, = AP - y11 

b, = AW) - v,Zo, 

where 

91= 
AbE) -40 AW) + AP 42 - uo 4~) 

C%/(Y - 1) 

j;;; 

0 5 10 15 20 25 30 35 40 45 50 

A(P)--• AP 
v2 = 

co 

and the speed of sound c is given by 

c=J?Io. 

The computation of the numerical flux in (11) is 

0 f  ,  

0 5 10 15 20 25 30 35 40 45 50 

now Dcflagmtion-800 pts. K@=S000, MU=2 

straightforward: The entries in the matrix B, are obtained 
from (17) and evaluated from the Roe averages (19). The 

FIG. 1. A deflagration represented by the jump in Z trailing the 
pressure shock wave. 

0 
0 5 10 15 20 25 30 35 40 45 50 

0 s 10 15 20 25 30 35 40 45 50 

Lkflagration-200 ps. KO=5090. MU=2 
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is obtained directly from advancing in time in the other 
equations. 

The problem we chose to compute is a Riemann problem, 
where the initial data is given by 

The initial data is such that the fresh gas is on the right, 
Z = 1, and the completely burnt gas is on the left, Z = 0. The 
fresh gas is at an ambient pressure of 1 atm and temperature 
of 294.1 K. We assume that reactions are one-step processes 
by which a fraction of the fresh gas (for example, a mixture 
of methane and air) is converted into burnt gas and heat is 
released. The amount of heat released when the gas is 
completely burnt is given by qo. A reasonable value for q. 
which is consistent with the type of reaction described is 

(~3 PU, PE, @Xx) 
(0.0016,0,25378756,0) 

= (0.0012, 0, 52774715, 0.0012) if x<o (22) if x> 0. 

A similar problem has been computed in [3] with standard 
splitting algorithms. The units are in CGS (centimeters, 
grams, seconds). We choose the gas constants c,, cP, y to be 
the appropriate constants for air: 

c, = 7177250, c, = 10048150, y = 1.4. 

01 
0 5 10 1.5 20 25 30 35 40 45 50 

qo=4.1868x10’o (=lkcal) 

(cf. [9]). The completely burnt gas is assumed to be 
at a temperature of 2210 K and a pressure of approxi- 
mately 10 atm. In all our computations the solution is 
computed at t= 5.5 x lo-‘s and T, =500 K, At/Ax= 

5 x10’ CJ-Weak Detonation Bifurcation-403 pts. 

J 
4 : 

0 5 10 15 20 25 30 35 40 4s 50 

KO=ZE+6, MLk2.9 

-0.5 1 
0 5 10 15 20 25 30 35 40 45 50 

Weak Deronation-200pu. KO=ZE+6, MU=2 

01 A 
0 5 10 15 20 25 30 35 40 45 50 

KO=ZE+6, MU=3.0 

6x1o’ 
I q  +’ I 

O(... 
0 5 10 15 20 25 30 35 40 45 50 

KCbZEi6, MU=3.1 

1 

0.8 

0.6 
N 

0.4 

0.2 I 

1 

0.8 
t + 

0.4 

0.6 
N t 1 

0 I 0.2 
I 

0 5 10 15 20 25 30 35 40 45 50 

CJ Detonatiow4OOpts. KC=ZEt6. MU=2 
01 

+ 
3 I 

0 5 10 15 20 25 30 35 40 45 50 

KO=ZE+6, MU=3.1 

FIG. 2. A non-physical weak detonation computed (top). The physi- 
cal solution is a CJ detonation given by the computation with twice the 
resolution (bottom). three plots). 

FIG. 3. Bifurcation from a CJ detonation to a weak detonation (top 



3 x lop6 (CFL No. ~0.8). The only quantities that change 
from one computation to another are K, At and Ax/p. 

In Fig. 1 we have computed the constant pressure 
deflagration which is initiated by a fluid mechanical shock. 
The top computation is on a coarser mesh (K,, At = 0.00375, 
Ax/p = 0.125) than the bottom one (K, At = 0.009375, 
Ax/p = 0.03125) if we consider K. and p fixed. Both show 
very good resolution (cf. Fig. 7 in [3], where a comparable 
solution was computed with K, At = 4.25 x 10P12, Ax/p = 
6.68 x 10P4, i.e., a much finer mesh). In particular, even on 
the coarse mesh one can distinguish the fluid mechanical 
shock from the trailing flame. 
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is a CJ detonation. The top figure is unphysical (for that 
fixed value of K,) and it is the result of lack of resolution. 

In Fig. 3 we changed the viscosity parameter or Ax/p 
while keeping K, At fixed at 0.75. There is a bifurcation from 
a CJ detonation to a weak detonation as Ax/p is changed 
from 0.0431 (CJ detonating) to 0.0417 (intermediate ) to 
0.0403 (weak detonation). The intermediate solution shows 
oscillations on a scale much larger than the mesh size. 
Figure 4 shows the same phenomenon with twice the 
resolution from Fig. 3, occurring at a slightly different value 
of Ax/p. As mentioned before, this qualitative behavior was 
rigorously proved for a 2 x 2 model by A. Majda [IS]. 

In Fig. 2 we have raised the value of K, At to 1.5 (top) and 
K, At = 0.75 (bottom) while keeping the same respective 
values of Ax/p as in Fig. 1. We see two completely different 
wave paterns; the top is a weak detonation while the bottom 

4. CONCLUSION 

Cl-Weak Detonation Bifurcation-SOOpu. 

/ 
+ 

01 L 

0 5 10 15 20 25 30 35 40 45 50 

KO=2E+6. MU=3.75 

0 5 10 15 20 25 30 35 40 45 50 

KLkZE+6. MW3.80 

p 1’; 
+ 

0 1 
0 5 10 15 20 25 30 35 40 45 50 

K(t2E+6. M&3.85 

In this paper we developed a subcell resolution method 
for viscous perturbations of hyperbolic conservation laws 
with the hope of getting higher resolution on coarse meshes. 
This method was tested on computing a problem in 
combustion and was shown to yield a good resolution of 
the flow on relatively coarse meshes. 

APPENDIX 

In this Appendix we solve for #k in (3) (Section 2), using 
the weakly nonlinear geometrical optics asymptotics. If we 
substitute (3) into (1) we obtain after cancellation 

Abu, ui, = -2s8,uiZ;; + lower order terms in u,, 

where B,= B(u,) and (Abv~)~=C,(da,~/&,) ukwi. 
If from now on we ignore the lower order terms in the 

equations, which is justified if ui is small, and we substitute 
the expression of u1 from (3) we obtain 

c bkb;q&&AbRkRs= -2 1 b:&,!B,R,. 
kr k 

Multiplying on the left by L,, the left eigenvector of A,, we 
obtain 

c c,,bkbfdk$iJj = -2 1 dlkb:#i, I= 1, . . . . n, (23) + 
1 k,s k + + * 

0 i where cNcs = L,AbR, R,, dlk = L,B&, and dk = 
0 5 10 15 20 25 30 35 40 45 50 &( (x - 2, t)/@k) and 4, = d,( (x - 1, t)/e/b,). 

KO=ZE+6, MIk3.85 Let us define the variables xl= (x- ;I,t)/.z/bl, 1= 1, . . . . n. 
FIG. 4. Same as Fig. 3 with twice the resolution. Suppose we fix I and consider Eq. (23) evaluated in terms of 
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the variable xl. Then xk = (bk/bl) x, + (A,- 1,) t/&/bk = 
xp(x,, t) and we obtain 

k#l,s#l 

+ bd,(x,) c c&W,) 
Sfl 

+ b&(x,) c C/k&h(%) + 24,6&‘h) 

k#I 

+2 1 d,,&(b;r(Xk)=o 

kfl 

which holds for all t with xl fixed. We follow the procedure 
in [ 193 and average every term in the equaticn with respect 
to t. If we assume that the bk’s tend to bounded values at 
infinity, then several terms are zero and we obtain 

c,,,b:hP;(xJ + c 
1 

qk,bkb; h - 
k,s#l,k#s 

T-CC 2T 

s 

T  

X _ T  dk(Xk(Xh t)) di(xs(% t)) dt 

1 
+b,d;b,) 1 Cd’: lim - 

kfl 
~+rn2T 

X 
I 

T  dk(Xkh t)) dt + ‘W$K(x,) = 0. 
-T 

Ifd,,=L,BOR,#Oandc,,,=L,AbR,R,=Vi,.R,#O (ifthe 
field is genuinely nonlinear [ 17]), we can choose the right 
eigenvectors R, so that c,/, = d,. Then 

(,(x,)=ktanh (x’-x~‘“b’“), I = 1, . . . . n, (24) 
/ 

is a solution to the equation above for any LX. In fact (24) 
solves the equation b,d; + 24;’ = 0, so we need to verify that 
the terms involving the limT, o. are zero. But this follows 
from 

- 
:,Jr, bk(Xk(XI> t)) 4%,(x,, t)) dt 

T  

112 
X 412b,(x,, t)) dt 

-T 

and the fact that (24) implies 145 1 L2, 

I, ti;(Xkhr t)) dt) 

112 
Q a 

and that 

dk(Xk(XI, t)) dt = 0. 

Remarks. The terms involving the lim., m which 
couple the different 6s and which vanish in our case are 
called resonances [ 191. We do not have a proof that (24) is 
the only solution with that boundary behavior at co but we 
believe it to be true. The subcell approximation is obtained 
by substituting (24) into (3) (Section 2): 

u(X, t) = U. -; c bk ; 
k 

x tanh 
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